

Subject: PCM
Topic: Maths

Q1 : The length of the latus rectum of the parabola $(x+2)^{2}=-14(y-5)$ is
A 7
B 14
C 21
D 28

Q2: One of the foci of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is
A $(3,0)$
B $(4,0)$
C $(5,0)$
D $(9,0)$

Q3 : If the circles $x^{2}+y^{2}-8 x-6 y+c=0$ and $x^{2}+y^{2}-2 y+d=0$ cut orthogonally, then $c+d$ equals
A 6
B 4
C 2
D 0

Q4 : The radius of the circle which touches both axes and passes through the point $(2,1)$ can be

\mathbf{A}	1
\mathbf{B}	2
\mathbf{C}	3
\mathbf{D}	4

Q5 : The area of the triangle with vertices $P(1,2,3), Q(4,5,6)$ and $R(0,0,0)$ is
A $\sqrt{6}$
B $2 \sqrt{6}$
c $3 \sqrt{6}$
D $4 \sqrt{6}$

Q6 : The unit vector in the direction of the vector $\overrightarrow{A B}$ if $\mathrm{A}=(-2,-1,3)$ and $\mathrm{B}=(1,1,0)$ is $\alpha i+\beta j+$ γk, then is $\alpha+\beta$ is

A $\frac{3}{\sqrt{22}}$
B $\frac{5}{\sqrt{22}}$
C $\frac{-3}{\sqrt{22}}$
D $\frac{-5}{\sqrt{22}}$

Q7: ${ }_{\text {If }}\left(\begin{array}{ll}3 x-y & x+3 y \\ 2 x-z & 2 y+z\end{array}\right)=\left(\begin{array}{ll}7 & 9 \\ 5 & 5\end{array}\right)$, then $\mathrm{x}+\mathrm{y}+\mathrm{z}$ equals
A 3
B 6
C 9
D 12

Q8:
If the product $a b c=1$, then the value of the determinant $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|$ is equal to
A 1
B 2
C 3
D 4

Q9: If (x, y, z) is the solution of the equations $4 x+y=7$, $3 y+4 z=5$, $5 x+3 z=2$,
then the value of $x+y+z$ equals
A 8
B 6
C 3
D 0

Q10
$:$ If $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ is the inverse of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a d-b c=1$, then g equals
A C
B - C
C b
D -b

Q11 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function defined by $f(x)=x^{2}$, then which of the following is true? :

A f is 1-1 but not onto
B f is onto but not 1-1
C f is neither 1-1 nor onto
D f is both 1-1 and onto

Q12 Consider the set $A=\{1,2,3\}$ along with the relation $R=\{(1,1),(2,2),(1,2),(2,1)(3,3)\}$. Which
: of the following statements is true?
A The relation is symmetric but not transitive
B The relation is transitive but not symmetric
C The relation is neither symmetric nor transitive
D The relation is both symmetric and transitive

Q13 let $z_{1}=1+i \sqrt{3}$ and $z_{2}=1+i$, then $\arg \left(z_{1} / z_{2}\right)$ is
:

A $\pi / 3$
B $\pi / 4$
C $\pi / 6$
D $\pi / 12$

Q14 Any non zero complex number z satisfying $|z-i|=|z+i|$ must lie on :

A real axis
B imaginary axis
C unit circle
D the line parallel to real axis through $z=i$

Q15 The value of $\left[\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right]^{4}$ is
A $-i \pi$
B $\mathrm{i} \pi$
C i
D -i

Q16 If ω is the cube root of unity, then $\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}$ equals
:
A 1

B 16
C 32
D 64

Q17 The value of $\tan \left[\sin ^{-1} \frac{5}{13}+\cot ^{-1} \frac{4}{3}\right]$ is
A $26 / 11$
B $56 / 33$
C 63/41
D 65/43

Q18 If $\tan ^{-1} x+2 \cot ^{-1} x=\frac{\pi}{3}$, then the value of x is
A $-\sqrt{3}$
B $-\sqrt{2}$
C $\sqrt{2}$
D $\sqrt{3}$

Q19 Which of the following is not a solution of the following equation ?
: $3 \tan ^{2} \theta-\sin \theta=0$
A $\mathrm{n} \pi$
B $\mathrm{n} \frac{\pi}{2}$
C $\mathrm{n}+(-1)^{\mathrm{n}} \frac{\pi}{6}$
D 0
$:^{\text {Q20 }}$ If $\sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}=1$, then $\frac{d y}{d x}$ equals
A $\sqrt{\frac{y}{x}}$

B $\sqrt{\frac{x}{y}}$
C y / x
D x / y

Q21 If $x=3 t /\left(1+t^{3}\right)$ and $y=3 t^{2} /\left(1+t^{3}\right)$ then $\frac{d y}{d x}$ at $t=1$ equals
A -6
B -1
C 1
D 6

Q22 The equation of the normal to the curve given by $x^{2}+2 x-3 y+3=0$ at the point $(1,2)$ is :

A $3 x+4 y-11=0$
B $3 x-4 y+11=0$
C $-3 x+4 y+11=0$
D $3 x-4 y-11=0$

Q23 If $f(x)=x^{5}-5 x+5$ then which of the following is TRUE ?
:
A f attains maximum at $x=1$
B fattains minimum at $x=1$
C f attains maximum at $x=0$
D fattains minimum at $x=-1$

Q24 The value of the integral $\int_{0}^{\frac{\pi}{2}} \log \tan \theta d \theta$ is

\mathbf{A}	0
\mathbf{B}	1

C	$\frac{\pi}{2}$
\mathbf{D}	$\log 2$

Q25 The area enclosed between the curve $y=11 x-24-x^{2}$ and the line $y=x$ is :

A $1 / 3$
B $3 / 4$
C 1
D $4 / 3$

Q26 The solution of the differential equation $\frac{d y}{d x}=y^{2} / x$ passing through the point $(1,-1)$ is
A $1 / y+\log x=0$
B $1 / y-\log x=0$
C $y+\log x=0$
D $y-\log x=0$
$\mathbf{Q 2 7}^{\text {Q27 }}$ The differential equation $e^{x} \frac{d y}{d x}+3 y=x^{2} y$ is
A Separable and not linear
B Both separable and linear
C Linear and not separable
D Neither separable nor linear

Q28 Let the mean of n observations is μ. If the first term is increased by 1 and second by 2 and so on, : then the new mean is

\mathbf{A}	$\mu+\mathrm{n}$
\mathbf{B}	$\mu+\mathrm{n} / 2$
\mathbf{C}	$+\frac{n(n+1)}{2}$

$\mathbf{D} \mu+\frac{(n+1)}{2}$

Q29 The arithmetic mean and mode of a given data are 24 and 12 respectively. Then its median is :

A 25
B 18
C 20
D 22

Q30 The probability of getting two heads out of 5 tosses of an unbiased coin is :

A $5 / 6$
B $5 / 8$
C $5 / 12$
D $5 / 16$

Q31 Cards marked with numbers 2 to 105 are placed in a box and mixed. One card is chosen at : random. The probability that the number on the card is less than 15 is

A $1 / 8$
B $1 / 9$
C $7 / 8$
D 8/9

Q32 An urn contains 4 black, 5 white and 6 red balls. A ball is drawn at random. The probability that it : is not black is

A $4 / 15$
B $9 / 15$
C $11 / 15$
D $13 / 15$

Q33 In a chess tournament, assume that your probability of winning a game is 0.3 against level 1 : players, 0.4 against level 2 players and 0.5 against level 3 players. It is further assumed that among the players 50% are at level $1,25 \%$ are at level 2 and the remaining are at level 3. The probability of winning a game against a randomly chosen player is

A 0.275
B 0.375
C 0.225
D 0.325
Q34 A man repays a loan of Rs. 3250 by paying Rs. 20 in the first month and then increases the : payment by Rs. 15 every month. The number of months it takes to clear the loan is

A 20
B 25

C 35
D 40

Q35 The coefficient of x^{3} in the expansion of $\left(x^{2}-2 / x\right)^{6}$ is
:
A - 160
B -80
C -40
D 0

Q36 If the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=5 ; 2 x+3 y+4 z=5$ and through : the origin is
$x^{2}+y^{2}+z^{2}-2 x-3 y-4 z+C=0$ then the value of C is
A 1
B -1
C 0
D 5

Q37 The equation of the plane containing the lines $(x+1) / 3=(y+3) / 5=(z+5) / 7$ and $(x-2) / 1=(y-4) / 3$: $=(z-6) / 5$

A $x+2 y+z=0$
B $x-2 y+z=0$
C $x-2 y-z=0$
D $x+2 y-z=0$

Q38 Let $(n)=\frac{1}{\sqrt{n^{2}}}+\frac{1}{\sqrt{\boldsymbol{n}^{2-1}}}+\cdots+\frac{1}{\sqrt{n^{2}-(\mathbf{n}-1)^{2}}}$. Then $\lim _{n \rightarrow \infty} f(n)$ equals
A $\pi / 4$
B $\pi / 2$
C $/ 2$
D 0
Q39 A particle is acted upon by three forces in one plane, equal to $2,2 \sqrt{2}$ and 1 Kg forces respectively;
: the first is horizontal, the second acts at 45° to the horizontal and the third is vertical. Then the angle θ which the resultant makes with the positive x -axis is

A $\tan ^{-1}(3 / 4)$
B $\tan ^{-1}(4 / 3)$
C $\tan ^{-1}(\sqrt{2} / 4)$
D $\tan ^{-1}(1)$

Q40 A block of mass 5 Kg starts to slide down a frictionless plane having an inclination of 25° from rest : at the top. The length of the incline is 2 metre. Then its speed when it reaches the bottom of the incline is

A $4.1 \mathrm{~m} / \mathrm{s}$
B $6.3 \mathrm{~m} / \mathrm{s}$
C $7.1 \mathrm{~m} / \mathrm{s}$
D $9.3 \mathrm{~m} / \mathrm{s}$

